Lasso
Consider the Lasso problem
\[ \text{minimize} ~\|A x - b\|_2^2 + \lambda \|x\|_1, \]
which has the graph form representation
\[
\begin{aligned}
&\text{minimize}
& & \|y - b\|_2^2 + \lambda \|x\|_1 \\
& \text{subject to}
& & y = A x.
\end{aligned}
\]
or equivalently
\[
\begin{aligned}
&\text{minimize}
& & f(y) + g(x) \\
& \text{subject to}
& & y = A x,
\end{aligned}
\]
where
\[ f_i(y_i) = (1/2) (y_i - b_i) ^ 2, ~~\text{ and } ~~g_j(x_j) = \lambda |x_j|. \]
MATLAB Code
1 2 3 4 5 6 7 8 9 10 11 12 13 | % Generate Data A = randn(100, 10); b = randn(100, 1); lambda = 5; % Populate f and g f.h = kSquare; f.b = b; g.h = kAbs; g.c = lambda; % Solve x = pogs(A, f, g); |
This example can be found in the file
.1
<pogs>/examples/matlab/lasso.m
R Code
1 2 3 4 5 6 7 8 9 10 11 | # Generate Data A = matrix(rnorm(100 * 10), 100, 10) b = rnorm(100) lambda = 5 # Populate f and g f = list(h = kSquare(), b = b) g = list(h = kAbs(), c = lambda) # Solve solution = pogs(A, f, g) |
This example can be found in the file
.1
<pogs>/examples/r/lasso.R
C++ Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include <random> #include <vector> #include "pogs.h" int main() { // Generate Data size_t m = 100, n = 10; std::vector<double> A(m * n); std::vector<double> b(m); std::vector<double> x(n); std::vector<double> y(m); std::default_random_engine generator; std::normal_distribution<double> n_dist(0.0, 1.0); for (unsigned int i = 0; i < m * n; ++i) A[i] = n_dist(generator); for (unsigned int i = 0; i < m; ++i) b[i] = n_dist(generator); // Populate f and g PogsData<double, double*> pogs_data(A.data(), m, n); pogs_data.x = x.data(); pogs_data.y = y.data(); pogs_data.f.reserve(m); for (unsigned int i = 0; i < m; ++i) pogs_data.f.emplace_back(kSquare, 1.0, b[i]); pogs_data.g.reserve(n); for (unsigned int i = 0; i < n; ++i) pogs_data.g.emplace_back(kAbs, 0.5); // Solve Pogs(&pogs_data); } |